Mississippi Agricultural and Forestry Experiment Station

Plant and Soil Sciences

The Department of Plant and Soil Sciences conducts research related to major agronomic crops, including cotton breeding and genetic improvements, row crops, soil microbiology and ecology, and the impact of environmental factors on plants and soils. Additional research is focused on new and existing herbicide and weed control management strategies in ornamental and row-cropping systems. Scientists also work in floriculture and ornamental horticulture, including landscape performance, production and propagation of nursery crops. Other scientists study management and eradication of aquatic and invasive weeds.

Learn more at pss.msstate.edu

 

A Canopy of Color

The process to develop a new crape myrtle cultivar takes a good bit of time. In the Mississippi Agricultural and Forestry Experiment Station, it begins at the McNeill Research Unit in south Mississippi. There some 3,600 crape myrtles are grown in a three-acre block with hopes of finding the next unusual or unique specimen. Knight has introduced five new crape myrtle varieties in recent months. All given Native American names with most having some Mississippi connection, it is hoped the trees will soon be licensed to a wholesaler for propagation and distribution. The five varieties include: Sequoyah, a unique clear red flower; Tishomingo, a clear medium to dark purple flower; Neshoba, a deep purple flower; Pascagoula, a deep purple flower; and Shumaka, a light pink flower. Read More

A Sweet Specialty

The economic impact of sweet potatoes in the state of Mississippi grew exponentially in 2015. Sweet potatoes stretched across 21,500 acres of Mississippi fields and generated $81 million in value of production, up 19 percent from 2014. Despite the growth, sweet potatoes are still considered a minor crop and as such, fewer research dollars are allocated to sweet potato research. MSU researchers are hoping to change that. MAFES scientists are researching different management practices to determine the most efficient and effective way to produce sweet potatoes. Research includes shortening the plant-back interval—or in other words, the amount of time you have to wait after a herbicide application before you can transplant sweet potatoes without injuring the crop. A lengthy plant-back interval will cause a farmer to lose out on the time they could have plants in the ground or prevent a herbicide from being available for use as a weed management tool. Scientists are evaluating sweet potato tolerance to several herbicides with long plant-back intervals in order to determine the level of risk associated with using these products in weed management systems. Recently, scientists also started producing virus-indexed heirloom varieties for home and niche growers. The goal is to eventually clean up everyone's sweet potatoes. Providing heirloom varieties is a way for to give back to the public as well as do some outreach about clean stock sources. Read More

A Window of Time

Timing is everything and for blueberry growers, the ability to harvest high-value fruit in the off season could reap financial rewards. Dr. Guihong Bi, plant and soil sciences research professor in the Mississippi Agricultural and Forestry Experiment Station, is currently evaluating organic and conventional blueberries grown in high tunnels. Those first fruits bear a premium price at market. There are 2,500 acres of blueberries in Mississippi that generate $8 million dollars annually. Production typically occurs south of Interstate 20 because of colder winters in the northern half of the state. Additionally, growers who go to market during the typical summer months don't get a premium for their crop. With high tunnels, growers have the potential to gain an edge on the market by having their berries ripen early by a month or more. Currently, there is no information available on containerized organic blueberry production in high tunnels in Mississippi. We are hoping to change that. The team is comparing organic and conventional production of ten early ripening cultivars. They are assessing the yield and the quality of each cultivar and chemically analyzing the fruit for antioxidant content. Read More

Asian Beetle Threatens Coastal Trees

A beetle that made its presence known in Mississippi this summer is threatening the extinction of red bay trees in the state. The beetle is the red bay ambrosia beetle, a dark brown insect about half the size of an uncooked grain of rice. It spreads the pathogen that causes Laurel wilt disease in many tree species, including Mississippi’s red bay and sassafras trees. MAFES scientists are trying to determine how the beetle got into Mississippi so it can be stopped. Read More

Best Turf for Cemetery Use

MAFES researchers found it takes a special kind of turf to keep a cemetery looking nice without frequent maintenance. Researchers planted St. Augustine grass, centipede grass, zoysia grass, bermuda grass and Mississippi Supreme, an ultra-dwarf bermuda grass. They examined each turf for performance in Mississippi’s climate, mowing requirements and ability to compete with weeds without regular fertilizer applications. It is estimated that the state has more than 3,000 acres of cemeteries with a wide range of costs to maintain turf. Cost is not the only challenge in cemetery turf maintenance; weeds and turf establishment also present obstacles. Weeds are a challenge to all lawns in the state, and cemeteries are no exception. Read More

Conserving Mississippi's Water Resources

MAFES scientists Jason Krutz, Tom Eubank, Lyle Pringle, and Joe Massey are testing several water-saving strategies, including a computer program that calculates the performance and improves the efficiency of furrow-irrigation systems. In ongoing field tests, the Pipe Hole and Universal Crown Evaluation Tool (PHAUCET) demonstrated the potential to reduce the amount of water pumped from the Delta’s underground aquifer. Preliminary results showed that the PHAUCET program reduces pumping times and water use by about 20 percent.

MAFES scientists are also working with Mississippi rice growers to determine the potential for using the Asian technique of intermittent flooding. Mississippi farmers flood their rice fields and then let the water levels naturally subside. When the upper half of a paddy has drained, they pump back enough water to reflood the entire field. However, leaving the floodwater at a lower level allows the paddy to better capture rainfall. For every inch of groundwater that does not have to be pumped, farmers save about a gallon of diesel fuel per acre. To date, intermittently flooded fields have produced the same or better rice yields as traditional fields, and milling quality has been unaffected. Read More

Cotton Tolerance to Glyphosate

Research has documented Roundup Ready cotton tolerance to glyphosate, but there is little data on the effect of glyphosate application on the critical fruit partitioning stage in the newer Roundup Ready Flex cotton. A MAFES study evaluated several Roundup Ready Flex cotton varieties to shed light on this question. The study found that the varieties evaluated exhibited excellent tolerance to multiple applications with no significant differences in yield.

Cultivating sunflowers for energy production

Agronomist Normie Buehring has been testing his green thumb on sunflowers, a crop that has potential as a food and bioenergy crop that farmers can grow in Mississippi. At the North Mississippi Research and Extension Center in Verona, scientists set out to evaluate new hybrid sunflowers with shorter stems, about 3–4 feet tall. They later planted the sunflowers at four locations around Mississippi as far north as Verona and as far south as Newton. Yield and oil content were equivalent to sunflowers grown in the North, where the flowers are typically raised. However, the Mississippi-grown sunflower seeds contained higher concentrations of oleic acid than the original planting seed. The high oleic acid content would be good for high-quality cooking oil production. Seed production and oil content are also important for bioenergy production.

Developing Better Cotton Varieties

The USDA classifies plant-parasitic nematodes as one of the greatest threats to crops throughout the world. Nematodes alone or in combination with other soil microorganisms attack almost every part of a plant, including its roots, stems, leaves, fruit, and seeds. Associate professor Ted Wallace is working to develop nematode-resistant cotton cultivars. To date, he has selected breeding lines that show resistance to two of the most important nematode pests in cotton. Wallace has completed three growing seasons using marker-assisted selection and has evaluated more than 10,000 plants in search of a desirable combination of resistance, yield, and fiber quality. MAFES scientists have mapped the cotton genome in an effort to identify genes that code for beneficial traits in cotton, including pest resistance. The scientists are part of an international team that has described the first “gold-standard” genome sequence for Gossypium raimondii, the first cotton variety chosen for sequencing by worldwide cotton scientists. Identifying key cotton genes and their importance is a crucial step in developing improved varieties with greater yield, quality, and sustainability.

Energy From Grass

Scientists have identified a species of grassy feedstock that works well in sustainable bioenergy production. Giant miscanthus, a warm-season Asian grass, has potential as a biomass crop for fuel. MAFES scientists have isolated, identified and selected a genotype of the species that fits agricultural production systems of Southeastern farmers. This perennial plant offers several production advantages. It produces biomass that can grow as tall as 12 feet and thrives on marginal cropland. The crop is tolerant of drought and excessive rain, and it requires few inputs once established and maintained under a one-cut system. Giant miscanthus can be harvested and baled like hay using the same type of equipment.

From Row Crop to Runway

From the field to fabric, from row-crop to runway, cotton plays a pivotal role in dozens of industries. Scientists in the Mississippi Agriculture and Forestry Experiment from agronomists to geneticists to plant pathologists to economists to fashion design and merchandising experts conduct vital research and provide students the baseline they need no matter which way they choose to contribute to the massive footprint cotton has in the global marketplace. On the row-crop side of the equation, Mississippi State University is considered a leading research institution focused on a variety of topics centered on the plant itself. On the textile front, a popular online resource for students seeking information on fashion careers and academic programs ranked Mississippi State among the nation's Top 50 fashion design schools in 2016. In agronomy, research covers the gamut of cotton production—from seed to harvest. Projects evaluate seed treatments for plant growth development and yield with numerous treatments, nematode populations, and soil textures. In fashion, MAFES scientists are working to identify the factors that affect Mississippi’s cotton industry's global competitiveness. Read More

Heed change, take root

The anticipated climate change will increasingly impact crop production and food security in the coming years. K. Raja Reddy, Mississippi Agricultural and Forestry Experiment Station scientist and research professor in the Department of Plant and Soil Sciences, studies how environmental stressors impact crops. As director of the Soil-Plant-Atmosphere-Research, or SPAR, facility at MSU, Reddy focuses on environmental plant physiology, evaluating factors such as temperature, drought, solar radiation and nutrients. He studies a variety of crops including corn rice, soybeans, cotton, sweet potatoes, peppers and biofuel crops. The research, much of which is funded by the corn, soybean, rice and cotton promotion boards, focuses on giving producers the tools they need in a changing climate. As scientists evaluate hybrid tolerance to such environmental stressors as heat and drought, their research helps producers select the ideal variety based on tolerance and yield potential for that particular location. As climate changes, Reddy hopes to continue to provide information that will optimize production while minimizing loss to environmental stressors in the field. Read More

In the Weeds

While palmer amaranth may look inconspicuous in its seedling stage, its impact on farmers is nothing short of shocking. In the absence of weed control, it could cause losses of up to $1.6 billion a year by overwhelming cotton, corn, and soybean fields. Traditionally it was fairly easy to manage: farmers could apply glyphosate, a herbicide that’s been around forever, and it would kill the weeds, allowing the crops to flourish. In 2008, that shifted. Scientists documented the first population of glyphosate-resistant Palmer amaranth, meaning that the weed no longer succumbed to applications of the herbicide. This made it difficult to kill without resorting to extreme measures. MAFES scientist have confirmed resistance in weeds like Palmer amaranth, as well as to map out which biotypes are most resistant, and to test whether the weeds are resistant to other herbicides. They also evaluate the effectiveness of herbicides like glyphosate for control of weeds in the Mississippi Delta. While the ideal way would be to find a herbicide with a new mode of action—a new way of killing the plant—one hasn't been found in 20 years. Instead companies have opted to genetically modify plants so that they can withstand old herbicides—like 2,4-D and dicamba. Although this works well to control weeds, plants without the dicamba or 2,4-D tolerant trait are ultra-sensitive to these herbicides. Scientists are conducting research to help prevent off-target herbicide applications by evaluating new formulations that are less volatile and drift less, as well as finding ways to reduce tank contamination. While the new formulations don't guarantee other crops will be kept safe, they may be a step toward providing producers with a tool to fight herbicide-resistant weeds. Read More

Irrigation innovation

MSU scientists research essential tools and best practices to improve irrigation in the field. Pipe Hole and Universal Crown Evaluation Tool, or PHAUCET, surge valves and soil moisture sensors are three essential tools recommended by Jason Krutz, MAFES researcher and Extension irrigation specialist. PHAUCET is a computerized program that calculates the correct hole size and distribution for poly pipe to furrow irrigate row crops. Surge valves split the distribution of water in the field. Soil moisture sensors determine the amount of moisture in the soil profile. Additionally, the university engages in two dynamic research programs that cut down on the quantity of water used in irrigation while improving water quality overall. In MSU’s Row-crop Irrigation Science and Extension Research, or RISER, program, scientists partner with growers to promote better irrigation management practices. In MSU’s Research and Education to Advance Conservation and Habitat, or REACH, program, scientists introduce growers to innovative management practices for water use that save money without compromising yield. MSU scientists are also looking ahead at research opportunities involving intermittent flooding, polyacrylamide gel and surface water. Read more

No-till farming opens hills to crop production

Time, experience and research findings show no-till farming can boost production, prevent soil erosion and transform hayfields and pastures into viable cropland. Producers who practice no-tillage grow crops without disturbing the soil except at planting, using any residue carried over from previous crops as mulch. Instead of tillage, earthworms and other soil organisms aerate the soil while preserving its structure. Today’s surge in commodity prices has created an ideal time for producers to embrace no-till methods. No-till works particularly well on sloping land that is often passed over by buyers and renters looking for cropland acres. Land cost in the Hills is lower than in the Mississippi Delta, and one can easily farm with no-till practices on sloping land. These fields drain well and will support equipment much better than land that has been tilled, so producers can work more days than in a tilled system. Read More

Plenty of Ground to Cover

The idea that cover crops help aid in soil health is as old as the Mississippi hills. In fact, before commercial fertilizers were available, legume cover crops were a mainstay in the crop rotations of many Mississippi farmers. Cover crop research endures in the Mississippi Agricultural and Forestry Experiment Station. Researchers are exploring novel ways to utilize cover crops in the improvement of soil health and while cover crops aren’t for every farmer in every field, the research indicates that cover crops offer benefits in certain situations. Current research includes determining ways to improve soil health through the use of cover crops and poultry litter. The research, which has been conducted over the past five years, is focused on quantifying fertilizer nitrogen equivalence from the application and utilization of poultry litter and cover crops. In low-end systems, the legume cover crop is recovering some of the nutrients from the poultry litter. Corn yields have increased the most in the system that include a legume and poultry litter. MAFES scientists are also focused on helping more than 1, 200 vegetable producers throughout Mississippi by studying the benefits of the cover crops vetch and rye in no-till vegetable production systems. Scientists in the Delta are researching whether specific tillage and cover crop practices will help solve the specific problem of crusting in silt loam soils. hese researchers are leveraging decades of knowledge and know-how in order to find innovative ways to utilize a system that has a long standing history in the Magnolia State. Read More

Researchers assess plant health for nitrogen prescription

Determining the right amount of nitrogen for crops can be a challenge for Mississippi producers. If there isn’t enough nitrogen, yield is sacrificed, while an excess amount can result in nutrient loss, which can negatively impact the crop and the environment. Achieving optimal efficiencies in nitrogen management is essential in decreasing costs while increasing environmental stewardship. MAFES scientist, Jac Varco, evaluates plants directly to determine nitrogen needs. He studies cotton and corn. Varco’s team uses tractor-mounted sensors to measure relative differences in crop size, biomass, leaf area and plant greenness. The measurement helps researchers determine the right prescription of variable rate nitrogen that needs to be applied to the field. Research results indicate the sensor-based fertilization is capable of either decreasing the amount of nitrogen while maintaining yield or increasing yield with slightly more nitrogen. Read more

Researchers explore early corn planting

Timing counts for a lot when it comes to planting corn. That’s why Mississippi State University scientists are researching the effects of planting date, plant population and hybrid selection for field corn. MAFES scientist Brien Henry studies how different hybrids and plant populations respond to the colder, wetter conditions of early planting. His work can gather information about environmental limitations, provide insight on optimal plant populations and explore avenues like whether certain hybrid traits will allow the crop to overcome the risks associated with early planning while reaping the benefits. Read more

Researchers use precision agriculture for weed control and more

MSU scientists utilize precision agriculture in weed control and herbicide drift research. As Jason Bond, MAFES associate research professor at MSU’s Delta Research and Extension Center, conducts and develops prescriptions to help farmers control weeds, MAFES scientist Dan Reynolds has several herbicide-related projects focused on improving production and reducing costs for farmers. Bond, along with other MSU researchers, developed a comprehensive herbicide program to manage glyphosate resistant Italian ryegrass. The prolific weed, resistant to the herbicide commonly known as Roundup, was first discovered in Mississippi and can be found throughout the state and in many states in the Southeast. The region looks to Mississippi to develop best practices for eradicating the weed. Reynolds and his team evaluate auxin technologies like dicamba and 2,4-D. In one recent study they evaluated the effect of drift reduction technology on soybeans injured with herbicide containing dicamba. The goal of the research is to provide an objective tool for recognizing and assessing drift injury from auxin herbicides at the field and landscape levels. Read more

Rice irrigation method saves fuel, water, money

Ten years of research indicates that a water management strategy can save rice producers money on fuel and conserve water without hurting yields. Joe Massey, a scientist with the Mississippi Agricultural and Forestry Experiment Station and professor in Mississippi State University’s Department of Plant and Soil Sciences, has focused his career on water conservation in agriculture. With funding from the Mississippi Rice Promotion Board and Mississippi Water Resources Research Institute, Massey worked with other MAFES researchers and rice growers to determine if intermittent flooding could work in Mississippi, as it does in Asia. Massey found that Mississippi farmers flood their rice fields and then let the floodwaters naturally subside. When saturated mud is exposed in the upper half of the paddy, they pump back to a full-flood depth of about four inches. Growers using this method might pump water onto their fields only every five to nine days, depending on weather and soil conditions. By allowing the water level in the paddies to decrease, growers can better capture rainfall. One grower using intermittent flooding in 2011 subjected his field to eight wetting and drying cycles, resulting in substantial savings of water and fuel. For every inch of rainwater that is captured or groundwater that is not pumped, farmers save about one gallon of diesel fuel per acre. For large operations, such savings can add up to tanker truckload quantities of fuel. Typically the Mississippi Delta gets 10 to 14 inches of rain during the growing season. If rice paddies are completely filled, there is no room to capture rainfall—it rains, and the water runs off. Runoff may carry away nutrients and other chemicals that are expensive to purchase, and it may also contaminate our streams and rivers. The study found that even partial adoption of intermittent flooding can save producers money on energy and can relieve stress on those producers who struggle to maintain their rice crop when other crops also need watering. Read More

Seeds of hope

George Awuni understands food insecurity firsthand. A native of Ghana, in sub-Saharan Africa, Awuni has seen what the scarcity of food does to a community and a nation. He has known hunger and, even though, his mother worked to provide for the family, there were times when Awuni went to bed on an empty stomach. As a post-doctoral researcher in the Mississippi Agricultural and Forestry Experiment Station, Awuni, along with Dan Reynolds, the Edgar E. and Winifred B. Hartwig Endowed Chair in Soybean Agronomy, is working to enable small-scale Ghanaian farmers to share in the rising demand for soybeans in Ghana. The research includes collaboration between five institutions of higher learning and 10 governmental and non-governmental research partners. Read More

Shades of Green

The uses of perennial warm-season grasses are as varied as the plants themselves. Applications include poultry bedding, cattle forage, conservation plantings, bioenergy, and much more. Scientists in the Mississippi Agricultural and Forestry Experiment Station have been propagating grasses as bioenergy crops since the early 2000s. Now as demand for renewable energy crops shift, MSU’s perennial grass research evolves to meet other needs. Read More

Soybean Innovation Laboratory

The Soybean Innovation Laboratory provides the science necessary to enable small producers to share in the rising demand for soybeans. The research also will enable low-resource countries to address problems of food insecurity and protein malnutrition. Mississippi State University's Agricultural and Forestry Experiment Station is among a consortium of universities and other partners receiving a $25 million, five-year international grant to boost soybean production across Africa. Mississippi State University is among a consortium of universities and other partners receiving a $25 million, five-year international grant to boost soybean production across Africa. The Feed the Future Innovation Laboratory for Soybean Value Chain Research, also known as the Soybean Innovation Laboratory (SIL), is being funded by the U.S. Agency for International Development.

Squeezing energy from a beet

Energy beets could provide an off-season crop for Mississippi farmers and an alternative energy source for the nation’s expanding biofuel industry. At the Delta Research and Extension Center in Stoneville, plant scientist Wayne Ebelhar and other researchers are examining the growth and profit potential for varieties of energy beet, a nonedible relative of the sugar beet used only in biofuel production. Because they are traditionally grown in much cooler climates, energy beets will grow best during Mississippi winters as a cover crop on fields between fall harvest and spring planting. MSU Extension agents are enlisting farmers willing to grow energy beets to test how well the crop grows in Mississippi and whether it can be produced at a profit. While energy beets are not a cheap crop to grow—about $700 per acre—the financial breakeven point would be yields around 20 tons per acre. Energy beets could yield as much as 50 tons per acre. After a few more years of testing, scientists are confident energy beets will make an excellent winter crop with minimal insect, disease, and weed pressure during the cold months. Read More

Studying coastal impact of ecofriendly green roofs

Horticulturists Christine Coker and Gary Bachman of the Coastal Research and Extension Center are studying and recording the effects of the coastal climate on eight “green roofs” at the Armed Forces Retirement Home in Gulfport. Green roofs are gardens planted in layers of specialized materials on properly reinforced rooftops. These green roofs sit atop the first floor and are visible from the veterans’ apartments, which rise above in towers. The 78,000-square-foot green roof system was a requirement for the retirement home to be certified through the U.S. Green Building Council’s Leadership in Energy and Environmental Design program. Certification measures, like installing green roofs, increase biodiversity and reduce energy consumption, erosion, and pollution. They also provide beautiful spaces for residents, staff, and visitors to enjoy. Coker and Bachman study how the coastal climate affects the microenvironments of green roofs. They gather data, such as median air temperature, humidity, moisture content of the plant medium, and saltwater spray exposure. Because limited data is available on green roofs in coastal areas, the project is expected to provide valuable insights on these types of ecosystems. Read More

Targeting Tomatoes

The most common garden vegetable is also a staple in research laboratories at Mississippi State. From herbicide tolerance to gene modification, tomatoes are being studied to help farmers grow the popular fruit with fewer losses or injuries to the plants. Dr. Sorina Popescu, MAFES assistant professor in biochemistry, molecular biology, entomology and plant pathology, is working to understand how tomato plants respond to pathogens at the molecular level, and editing the plants using CRISPR (clustered regularly interspaced short palindromic repeats) technology. Popescu explained that the technology allows her to silence a gene expression or make it louder, which affects the plant's response. The technique is promising, she said, because you don’t bring anything new into the plant or take anything away. The pathogen Popescu is studying is called Pseudomonas syringae. It can easily wipe out an entire tomato crop if it infects the garden.The pathogen causes brown-black leaf spots and specks on green and red fruit. The pathogen causes stunting and yield loss, particularly if young plants are infected. Most pathogens have effectors that act in very similar ways. By studying tomatoes and Pseudomonas syringae, Popescu believes the findings can be extended to other vegetable crops to make them less susceptible to pathogens. Other tomato research happening at Mississippi State, though, may show noticeable improvements in the field more quickly. Dr. Paul Tseng, assistant MAFES professor in plant and soil sciences, is working on two research projects to get rid of the weeds growing in tomato crops. One of Tseng's research projects is to find herbicide-tolerant tomatoes that won't be affected by herbicide drift. His research started with 120 different varieties of tomatoes. So far, he has found 10 to 20 varieties that are tolerant to different herbicides. These varieties, though, are not necessarily commercially-produced tomatoes, and don't have the agronomic qualities like high yield and large fruit size that growers want. Tseng is also fighting the weeds directly through the allopathic traits in tomatoes. Allelopathy is the chemical inhibition of one plant by another, due to a release into the environment of substances acting as growth inhibitors. Allopathic tomatoes would release chemicals into the soil that interact with the roots and weeds and kill them. Both studies will help growers continue to provide one of summer's favorite fruits: red, ripe tomatoes. Read More

To till or not to till?

After four decades of research in corn, cotton, and soybeans, MAFES scientists have figured out a thing or two about conservation tillage. And research is helping north Mississippi farmers get seeds into the ground sooner with fewer equipment passes. The practice saves producers money with fewer passes across the field. It also helps protect the highly erodible soils in north Mississippi. A recent discovery has found that the practice also protects soil health. Read More

Toxin-free Castor Would Be Major Help to Industry

Castor oil is the highly desirable, plentiful product of castor beans. The oil is used to produce everything from cosmetics and paints to jet aircraft lubricants and certain plastics. The thick oil makes up 60 percent of the seed’s weight. By comparison, high-oil corn or canola only produce about 25 percent oil by weight. Ninety percent of the oil is ricinoleic acid, a fatty acid found in large quantities only in castor oil. This acid has many industrial applications. MAFES scientist are trying to make it possible to grow the plant safely for commercial oil production in Mississippi. Castor seed meal, not the oil, contains ricin, a toxic protein that can become fatal if untreated in the body. To make castor a commercially viable U.S. crop, scientists are trying to discover a way to genetically modify the plant so that either the gene that produces the toxin is no longer expressed or the toxin is no longer produced. One of the challenges is that castor resists being transformed. The genetic modification process involves inserting a fragment of DNA foreign to the plant into the genetic code, where it must be accepted and become active. Everything from cotton to corn and soybeans has been genetically modified, but castor is much more difficult. The castor cells can be transformed, but you can’t get whole plants to grow from the cells. Read More

Turning perennial grass into green gasoline

Plant scientist Brian Baldwin spent years developing a variety of giant miscanthus for use in biofuel production. Baldwin’s discovery, an adaptation of a perennial grass native to Asia, is particularly suited to the Southeast’s climate and soils, and it produces more biomass per acre than other bioenergy crops. MSU filed a plant patent application for the resulting variety, named Freedom, in 2010 and licensed it to Georgia-based Repreve Renewables LLC. Cool Planet Biofuels has used Freedom giant miscanthus to create gasoline, a breakthrough in the biofuels industry. In a pilot test, Cool Planet generated about 4,000 gallons of gasoline per acre of biomass using Freedom grown under nearly optimal crop growth conditions. Their process used air-dried, coarsely ground grass subjected to moderately high temperature and pressure to produce a ready-to-use gasoline, chemically identical to the petroleum-based fossil fuel. Baldwin also works to develop other crops suitable for biomass production, including oilseed crops, native and exotic grasses, and Sunn hemp, kenaf, and other fiber crops. For example, he is testing several switchgrass species for their ability to germinate on demand, which would allow farmers to increase yields of this biomass crop. Baldwin also examines the use of traditional crops as alternative energy sources. In one such project, he works to improve the sugar content of a sweet sorghum variety. In collaboration with the USDA-ARS, Baldwin is developing a cold-hardy sugarcane variety.

Using High Tunnels to Produce Crops Year-round

Don’t tell assistant research professor Bill Evans that you can’t grow tomatoes in January. Evans is raising warm-season vegetables, including organic tomatoes, cucumbers, and broccoli, throughout the winter using high-tunnel greenhouses, unheated hoop buildings covered in polyethylene. While the procedure used at the Truck Crops Branch Experiment Station in Copiah County is not ready for commercial production, Evans’s project has led to the installation of dozens of high tunnels across the state. In another effort, Evans studies methods of building better soil structure during the low-production months of July and August to improve fall production.

Where the Grass is Greener

Dr. Rocky Lemus is on a mission: to help Mississippi producers become better forage managers. To accomplish his mission, he and Joshua White, manager of the MAFES Official Variety Testing program in forages, are developing a year-round grazing system. The grazing system, combined with the Official Variety Trials program in forages, and a newly developed forage testing program all work together to make Mississippians better forage managers for grazing cattle and hay production. Read More