Mississippi Agricultural and Forestry Experiment Station

Plant Production Systems

A Canopy of Color

The process to develop a new crape myrtle cultivar takes a good bit of time. In the Mississippi Agricultural and Forestry Experiment Station, it begins at the McNeill Research Unit in south Mississippi. There some 3,600 crape myrtles are grown in a three-acre block with hopes of finding the next unusual or unique specimen. Knight has introduced five new crape myrtle varieties in recent months. All given Native American names with most having some Mississippi connection, it is hoped the trees will soon be licensed to a wholesaler for propagation and distribution. The five varieties include: Sequoyah, a unique clear red flower; Tishomingo, a clear medium to dark purple flower; Neshoba, a deep purple flower; Pascagoula, a deep purple flower; and Shumaka, a light pink flower. Read More

A Sweet Specialty

The economic impact of sweet potatoes in the state of Mississippi grew exponentially in 2015. Sweet potatoes stretched across 21,500 acres of Mississippi fields and generated $81 million in value of production, up 19 percent from 2014. Despite the growth, sweet potatoes are still considered a minor crop and as such, fewer research dollars are allocated to sweet potato research. MSU researchers are hoping to change that. MAFES scientists are researching different management practices to determine the most efficient and effective way to produce sweet potatoes. Research includes shortening the plant-back interval—or in other words, the amount of time you have to wait after a herbicide application before you can transplant sweet potatoes without injuring the crop. A lengthy plant-back interval will cause a farmer to lose out on the time they could have plants in the ground or prevent a herbicide from being available for use as a weed management tool. Scientists are evaluating sweet potato tolerance to several herbicides with long plant-back intervals in order to determine the level of risk associated with using these products in weed management systems. Recently, scientists also started producing virus-indexed heirloom varieties for home and niche growers. The goal is to eventually clean up everyone's sweet potatoes. Providing heirloom varieties is a way for to give back to the public as well as do some outreach about clean stock sources. Read More

A Window of Time

Timing is everything and for blueberry growers, the ability to harvest high-value fruit in the off season could reap financial rewards. Dr. Guihong Bi, plant and soil sciences research professor in the Mississippi Agricultural and Forestry Experiment Station, is currently evaluating organic and conventional blueberries grown in high tunnels. Those first fruits bear a premium price at market. There are 2,500 acres of blueberries in Mississippi that generate $8 million dollars annually. Production typically occurs south of Interstate 20 because of colder winters in the northern half of the state. Additionally, growers who go to market during the typical summer months don't get a premium for their crop. With high tunnels, growers have the potential to gain an edge on the market by having their berries ripen early by a month or more. Currently, there is no information available on containerized organic blueberry production in high tunnels in Mississippi. We are hoping to change that. The team is comparing organic and conventional production of ten early ripening cultivars. They are assessing the yield and the quality of each cultivar and chemically analyzing the fruit for antioxidant content. Read More

Asian Beetle Threatens Coastal Trees

A beetle that made its presence known in Mississippi this summer is threatening the extinction of red bay trees in the state. The beetle is the red bay ambrosia beetle, a dark brown insect about half the size of an uncooked grain of rice. It spreads the pathogen that causes Laurel wilt disease in many tree species, including Mississippi’s red bay and sassafras trees. MAFES scientists are trying to determine how the beetle got into Mississippi so it can be stopped. Read More

Best Turf for Cemetery Use

MAFES researchers found it takes a special kind of turf to keep a cemetery looking nice without frequent maintenance. Researchers planted St. Augustine grass, centipede grass, zoysia grass, bermuda grass and Mississippi Supreme, an ultra-dwarf bermuda grass. They examined each turf for performance in Mississippi’s climate, mowing requirements and ability to compete with weeds without regular fertilizer applications. It is estimated that the state has more than 3,000 acres of cemeteries with a wide range of costs to maintain turf. Cost is not the only challenge in cemetery turf maintenance; weeds and turf establishment also present obstacles. Weeds are a challenge to all lawns in the state, and cemeteries are no exception. Read More

Conserving Mississippi's Water Resources

MAFES scientists Jason Krutz, Tom Eubank, Lyle Pringle, and Joe Massey are testing several water-saving strategies, including a computer program that calculates the performance and improves the efficiency of furrow-irrigation systems. In ongoing field tests, the Pipe Hole and Universal Crown Evaluation Tool (PHAUCET) demonstrated the potential to reduce the amount of water pumped from the Delta’s underground aquifer. Preliminary results showed that the PHAUCET program reduces pumping times and water use by about 20 percent.

MAFES scientists are also working with Mississippi rice growers to determine the potential for using the Asian technique of intermittent flooding. Mississippi farmers flood their rice fields and then let the water levels naturally subside. When the upper half of a paddy has drained, they pump back enough water to reflood the entire field. However, leaving the floodwater at a lower level allows the paddy to better capture rainfall. For every inch of groundwater that does not have to be pumped, farmers save about a gallon of diesel fuel per acre. To date, intermittently flooded fields have produced the same or better rice yields as traditional fields, and milling quality has been unaffected. Read More

Corn researchers develop in-field aflatoxin approach

MAFES scientists are researching new ways to reduce aflatoxin in infected corn. Corn is one of the state’s leading row crops, but it is susceptible to aflatoxin, a fungus that can reduce profits and hurt marketability. Aflatoxins are naturally occurring chemicals produced by the fungi Aspergillus flavus and A. parasiticus. The fungi appear as yellow-green or gray-green molds on corn in the field or in storage. Scientists are applying granules of Aspergillus flavus that do not produce aflatoxin but do compete with the native Aspergillus flavus. In essence, they are using a good fungus to fight a bad one. Aflatoxin levels are not normally high in corn, but Mississippi’s hot, humid climate encourages the growth of the fungus that produces the toxin. Heat, drought, high humidity, insect infestation and anything else that stresses the crop favor fungal growth. Aflatoxin can build up in crops such as corn, cotton, peanuts and tree nuts. Aspergillus infects corn by invading through corn silks or through insect damage to kernels or ears. Using non-aflatoxin-producing A. flavus strains has the potential to protect much of the state’s corn harvest. Read More

Cotton Tolerance to Glyphosate

Research has documented Roundup Ready cotton tolerance to glyphosate, but there is little data on the effect of glyphosate application on the critical fruit partitioning stage in the newer Roundup Ready Flex cotton. A MAFES study evaluated several Roundup Ready Flex cotton varieties to shed light on this question. The study found that the varieties evaluated exhibited excellent tolerance to multiple applications with no significant differences in yield.

Cotton yields increase with new technology

Researchers at Mississippi State University have developed technology that uses reflected light to analyze the presence of certain nematodes in cotton fields so producers can increase profits. Since 2001, MAFES and MSU scientists have been developing a way to use remote sensing technology to battle reniform and root-knot nematodes, which are the No. 1 cotton pest in Mississippi, Alabama and Louisiana. In recent years, Mississippi cotton producers lost more profits from these nematode infestations than any other state, including a loss of 225,000 bales worth $87.8 million in 2006. Compared to the nematode counts, the data collected through hyperspectral imaging was 75 to 100 percent accurate. The data was used to generate a field map showing areas of low, medium and high nematode populations. From that, a prescription map for applying different amounts of nematicide was created. For the producers, the yields were higher, which increases profits. Plus they saved money by applying only the amount of chemical required rather than blanketing their field with the amount needed to treat the highest population of nematodes found in their soil samples. The third benefit is to the environment, because site-specific applications reduce the amount of chemical used. This research benefits not only Mississippi, but the entire Southeast, as producers in Alabama and Georgia routinely use the site-specific application method for treating their fields. Read More

Developing Better Cotton Varieties

The USDA classifies plant-parasitic nematodes as one of the greatest threats to crops throughout the world. Nematodes alone or in combination with other soil microorganisms attack almost every part of a plant, including its roots, stems, leaves, fruit, and seeds. Associate professor Ted Wallace is working to develop nematode-resistant cotton cultivars. To date, he has selected breeding lines that show resistance to two of the most important nematode pests in cotton. Wallace has completed three growing seasons using marker-assisted selection and has evaluated more than 10,000 plants in search of a desirable combination of resistance, yield, and fiber quality. MAFES scientists have mapped the cotton genome in an effort to identify genes that code for beneficial traits in cotton, including pest resistance. The scientists are part of an international team that has described the first “gold-standard” genome sequence for Gossypium raimondii, the first cotton variety chosen for sequencing by worldwide cotton scientists. Identifying key cotton genes and their importance is a crucial step in developing improved varieties with greater yield, quality, and sustainability.

Energy From Grass

Scientists have identified a species of grassy feedstock that works well in sustainable bioenergy production. Giant miscanthus, a warm-season Asian grass, has potential as a biomass crop for fuel. MAFES scientists have isolated, identified and selected a genotype of the species that fits agricultural production systems of Southeastern farmers. This perennial plant offers several production advantages. It produces biomass that can grow as tall as 12 feet and thrives on marginal cropland. The crop is tolerant of drought and excessive rain, and it requires few inputs once established and maintained under a one-cut system. Giant miscanthus can be harvested and baled like hay using the same type of equipment.

From Row Crop to Runway

From the field to fabric, from row-crop to runway, cotton plays a pivotal role in dozens of industries. Scientists in the Mississippi Agriculture and Forestry Experiment from agronomists to geneticists to plant pathologists to economists to fashion design and merchandising experts conduct vital research and provide students the baseline they need no matter which way they choose to contribute to the massive footprint cotton has in the global marketplace. On the row-crop side of the equation, Mississippi State University is considered a leading research institution focused on a variety of topics centered on the plant itself. On the textile front, a popular online resource for students seeking information on fashion careers and academic programs ranked Mississippi State among the nation's Top 50 fashion design schools in 2016. In agronomy, research covers the gamut of cotton production—from seed to harvest. Projects evaluate seed treatments for plant growth development and yield with numerous treatments, nematode populations, and soil textures. In fashion, MAFES scientists are working to identify the factors that affect Mississippi’s cotton industry's global competitiveness. Read More

Heed change, take root

The anticipated climate change will increasingly impact crop production and food security in the coming years. K. Raja Reddy, Mississippi Agricultural and Forestry Experiment Station scientist and research professor in the Department of Plant and Soil Sciences, studies how environmental stressors impact crops. As director of the Soil-Plant-Atmosphere-Research, or SPAR, facility at MSU, Reddy focuses on environmental plant physiology, evaluating factors such as temperature, drought, solar radiation and nutrients. He studies a variety of crops including corn rice, soybeans, cotton, sweet potatoes, peppers and biofuel crops. The research, much of which is funded by the corn, soybean, rice and cotton promotion boards, focuses on giving producers the tools they need in a changing climate. As scientists evaluate hybrid tolerance to such environmental stressors as heat and drought, their research helps producers select the ideal variety based on tolerance and yield potential for that particular location. As climate changes, Reddy hopes to continue to provide information that will optimize production while minimizing loss to environmental stressors in the field. Read More

Identifying Destructive Invaders

Exotic insect species enter the United States through multiple routes, such as on wood shipping pallets, plant materials, and imported fruits and vegetables. The U.S. government sets trade restrictions to help prevent the introduction of nonnative pests, and its inspectors work at all borders to search for and confiscate materials carrying these insects. Some hidden pests do make it past inspection and move into U.S. crops. Once established, these pests can damage crops and native plant species, ultimately causing severe economic damage. Quick identification of invasive species is crucial to stopping their spread. The Mississippi Entomological Museum was recently designated as the Eastern Region Identification Center for the USDA’s Animal and Plant Health Inspection Service.

In the Weeds

While palmer amaranth may look inconspicuous in its seedling stage, its impact on farmers is nothing short of shocking. In the absence of weed control, it could cause losses of up to $1.6 billion a year by overwhelming cotton, corn, and soybean fields. Traditionally it was fairly easy to manage: farmers could apply glyphosate, a herbicide that’s been around forever, and it would kill the weeds, allowing the crops to flourish. In 2008, that shifted. Scientists documented the first population of glyphosate-resistant Palmer amaranth, meaning that the weed no longer succumbed to applications of the herbicide. This made it difficult to kill without resorting to extreme measures. MAFES scientist have confirmed resistance in weeds like Palmer amaranth, as well as to map out which biotypes are most resistant, and to test whether the weeds are resistant to other herbicides. They also evaluate the effectiveness of herbicides like glyphosate for control of weeds in the Mississippi Delta. While the ideal way would be to find a herbicide with a new mode of action—a new way of killing the plant—one hasn't been found in 20 years. Instead companies have opted to genetically modify plants so that they can withstand old herbicides—like 2,4-D and dicamba. Although this works well to control weeds, plants without the dicamba or 2,4-D tolerant trait are ultra-sensitive to these herbicides. Scientists are conducting research to help prevent off-target herbicide applications by evaluating new formulations that are less volatile and drift less, as well as finding ways to reduce tank contamination. While the new formulations don't guarantee other crops will be kept safe, they may be a step toward providing producers with a tool to fight herbicide-resistant weeds. Read More

Irrigation innovation

MSU scientists research essential tools and best practices to improve irrigation in the field. Pipe Hole and Universal Crown Evaluation Tool, or PHAUCET, surge valves and soil moisture sensors are three essential tools recommended by Jason Krutz, MAFES researcher and Extension irrigation specialist. PHAUCET is a computerized program that calculates the correct hole size and distribution for poly pipe to furrow irrigate row crops. Surge valves split the distribution of water in the field. Soil moisture sensors determine the amount of moisture in the soil profile. Additionally, the university engages in two dynamic research programs that cut down on the quantity of water used in irrigation while improving water quality overall. In MSU’s Row-crop Irrigation Science and Extension Research, or RISER, program, scientists partner with growers to promote better irrigation management practices. In MSU’s Research and Education to Advance Conservation and Habitat, or REACH, program, scientists introduce growers to innovative management practices for water use that save money without compromising yield. MSU scientists are also looking ahead at research opportunities involving intermittent flooding, polyacrylamide gel and surface water. Read more

MSU research benefits poinsettia producers

Researchers at Mississippi State University have found a cost-effective and environmentally friendly strategy for fighting one of the most serious soil-borne diseases in poinsettia production. Pythium stem and root rot is a common problem in poinsettia production because the fungus thrives in cool, saturated and poorly drained soils. MAFES researchers found a way to use organic methods and fewer fungicides to successfully fight this pathogen. Pythium is a widespread fungus. Plants are cross-contaminated by splashing water or soil from pot to pot. In nursery management, producers treat the plants when they transplant cuttings to the pot. Once the disease is established, it’s too late to treat, so growers have to use a fungicide early in the season to make sure they have a healthy crop. The standard conventional fungicide is effective but expensive, and there is a high risk that the fungus will become resistant to the chemical. Managing resistance to important fungicides is a key component of a disease management program. One of the strategies MAFES scientists are researching is integrating biofungicides. Biological agents are not conventional fungicides or chemicals, but organic methods of fighting fungi or other harmful microorganisms. The study found that a reduced rate of the conventional fungicide, when used with a biological agent, resulted in plants that didn’t rot and had similar growth to the label rate of conventional fungicides. This is beneficial to growers because it reduces their impact on the environment. It also reduces the risk of the pathogens adapting to the fungicides and becoming resistant and may save producers money by reducing the amount of fungicide they use. Read More

Navigating the Farm Bill Maze

The Food, Conservation, and Energy Act of 2008, also known as the 2008 U.S. Farm Bill, contains 15 titles covering everything from commodity crops to energy. As legislators work on the 2013 Farm Bill, agricultural economists Keith Coble and Barry Barnett are ready to tackle the massive legislation and decipher it for Mississippi producers. Coble serves as chief economist to the minority leadership of the Senate Agriculture Committee, while Barnett is an advisor for the U.S. Federal Crop Insurance Program. These economists understand the complex legislation and are nationally and internationally known for their work. They will soon begin developing computer models to help producers make the best decisions to manage risk.

No-till farming opens hills to crop production

Time, experience and research findings show no-till farming can boost production, prevent soil erosion and transform hayfields and pastures into viable cropland. Producers who practice no-tillage grow crops without disturbing the soil except at planting, using any residue carried over from previous crops as mulch. Instead of tillage, earthworms and other soil organisms aerate the soil while preserving its structure. Today’s surge in commodity prices has created an ideal time for producers to embrace no-till methods. No-till works particularly well on sloping land that is often passed over by buyers and renters looking for cropland acres. Land cost in the Hills is lower than in the Mississippi Delta, and one can easily farm with no-till practices on sloping land. These fields drain well and will support equipment much better than land that has been tilled, so producers can work more days than in a tilled system. Read More

Plenty of Ground to Cover

The idea that cover crops help aid in soil health is as old as the Mississippi hills. In fact, before commercial fertilizers were available, legume cover crops were a mainstay in the crop rotations of many Mississippi farmers. Cover crop research endures in the Mississippi Agricultural and Forestry Experiment Station. Researchers are exploring novel ways to utilize cover crops in the improvement of soil health and while cover crops aren’t for every farmer in every field, the research indicates that cover crops offer benefits in certain situations. Current research includes determining ways to improve soil health through the use of cover crops and poultry litter. The research, which has been conducted over the past five years, is focused on quantifying fertilizer nitrogen equivalence from the application and utilization of poultry litter and cover crops. In low-end systems, the legume cover crop is recovering some of the nutrients from the poultry litter. Corn yields have increased the most in the system that include a legume and poultry litter. MAFES scientists are also focused on helping more than 1, 200 vegetable producers throughout Mississippi by studying the benefits of the cover crops vetch and rye in no-till vegetable production systems. Scientists in the Delta are researching whether specific tillage and cover crop practices will help solve the specific problem of crusting in silt loam soils. hese researchers are leveraging decades of knowledge and know-how in order to find innovative ways to utilize a system that has a long standing history in the Magnolia State. Read More

Researchers assess plant health for nitrogen prescription

Determining the right amount of nitrogen for crops can be a challenge for Mississippi producers. If there isn’t enough nitrogen, yield is sacrificed, while an excess amount can result in nutrient loss, which can negatively impact the crop and the environment. Achieving optimal efficiencies in nitrogen management is essential in decreasing costs while increasing environmental stewardship. MAFES scientist, Jac Varco, evaluates plants directly to determine nitrogen needs. He studies cotton and corn. Varco’s team uses tractor-mounted sensors to measure relative differences in crop size, biomass, leaf area and plant greenness. The measurement helps researchers determine the right prescription of variable rate nitrogen that needs to be applied to the field. Research results indicate the sensor-based fertilization is capable of either decreasing the amount of nitrogen while maintaining yield or increasing yield with slightly more nitrogen. Read more

Researchers explore early corn planting

Timing counts for a lot when it comes to planting corn. That’s why Mississippi State University scientists are researching the effects of planting date, plant population and hybrid selection for field corn. MAFES scientist Brien Henry studies how different hybrids and plant populations respond to the colder, wetter conditions of early planting. His work can gather information about environmental limitations, provide insight on optimal plant populations and explore avenues like whether certain hybrid traits will allow the crop to overcome the risks associated with early planning while reaping the benefits. Read more

Researchers Make 'Elusieve' Dreams Happen

Ground corn flour, soybean meal and distillers dried grains with solubles (DDGS) — a by-product from ethanol production — comprise more than 70 percent of swine and poultry diets. While these ingredients are important for livestock nutrition, they are high in fiber, which is not easily digested by swine and poultry. Feed producers needed a system to remove the fiber while maintaining vital nutrients. MAFES scientists developed a process called "Elusieve" that uses a combination of sieving and air classification to separate fiber from feeds. This technique sifts particles into four sizes and then blows them with air to remove fiber. They found that fiber separation increases starch content of ground corn flour by 3 percent and increases protein contents of DDGS and soybean meal. Read More

Researchers use precision agriculture for weed control and more

MSU scientists utilize precision agriculture in weed control and herbicide drift research. As Jason Bond, MAFES associate research professor at MSU’s Delta Research and Extension Center, conducts and develops prescriptions to help farmers control weeds, MAFES scientist Dan Reynolds has several herbicide-related projects focused on improving production and reducing costs for farmers. Bond, along with other MSU researchers, developed a comprehensive herbicide program to manage glyphosate resistant Italian ryegrass. The prolific weed, resistant to the herbicide commonly known as Roundup, was first discovered in Mississippi and can be found throughout the state and in many states in the Southeast. The region looks to Mississippi to develop best practices for eradicating the weed. Reynolds and his team evaluate auxin technologies like dicamba and 2,4-D. In one recent study they evaluated the effect of drift reduction technology on soybeans injured with herbicide containing dicamba. The goal of the research is to provide an objective tool for recognizing and assessing drift injury from auxin herbicides at the field and landscape levels. Read more

Rice irrigation method saves fuel, water, money

Ten years of research indicates that a water management strategy can save rice producers money on fuel and conserve water without hurting yields. Joe Massey, a scientist with the Mississippi Agricultural and Forestry Experiment Station and professor in Mississippi State University’s Department of Plant and Soil Sciences, has focused his career on water conservation in agriculture. With funding from the Mississippi Rice Promotion Board and Mississippi Water Resources Research Institute, Massey worked with other MAFES researchers and rice growers to determine if intermittent flooding could work in Mississippi, as it does in Asia. Massey found that Mississippi farmers flood their rice fields and then let the floodwaters naturally subside. When saturated mud is exposed in the upper half of the paddy, they pump back to a full-flood depth of about four inches. Growers using this method might pump water onto their fields only every five to nine days, depending on weather and soil conditions. By allowing the water level in the paddies to decrease, growers can better capture rainfall. One grower using intermittent flooding in 2011 subjected his field to eight wetting and drying cycles, resulting in substantial savings of water and fuel. For every inch of rainwater that is captured or groundwater that is not pumped, farmers save about one gallon of diesel fuel per acre. For large operations, such savings can add up to tanker truckload quantities of fuel. Typically the Mississippi Delta gets 10 to 14 inches of rain during the growing season. If rice paddies are completely filled, there is no room to capture rainfall—it rains, and the water runs off. Runoff may carry away nutrients and other chemicals that are expensive to purchase, and it may also contaminate our streams and rivers. The study found that even partial adoption of intermittent flooding can save producers money on energy and can relieve stress on those producers who struggle to maintain their rice crop when other crops also need watering. Read More

Smart Water

Water is essential. All crops require water and many of the crops in Mississippi depend on irrigation. A little more than half of Mississippi farmland and nearly all of the row-crop acreage in the Mississippi Delta is irrigated. Much of that water comes from the Mississippi River Valley Alluvial Aquifer. That aquifer is losing approximately 300,000 acre-feet of water annually and groundwater levels have decreased over six meters in the last decade and a half. That’s why researchers in the Mississippi Agricultural and Forestry Experiment Station and the Department of Agricultural and Biological Engineering are focused on finding smart ways to protect Mississippi’s water resources. Scientists are studying how artificial intelligence (AI) might help predict aquifer levels. They are also evaluating how on-farm water storage can help save water while improving water quality. Scientists are also finding better ways for producers to irrigate crops. Protecting one of Mississippi’s most important resources requires a collaborative effort and MSU scientists are doing their part to make a difference in this noble endeavor. Read More

Soybean Innovation Laboratory

The Soybean Innovation Laboratory provides the science necessary to enable small producers to share in the rising demand for soybeans. The research also will enable low-resource countries to address problems of food insecurity and protein malnutrition. Mississippi State University's Agricultural and Forestry Experiment Station is among a consortium of universities and other partners receiving a $25 million, five-year international grant to boost soybean production across Africa. Mississippi State University is among a consortium of universities and other partners receiving a $25 million, five-year international grant to boost soybean production across Africa. The Feed the Future Innovation Laboratory for Soybean Value Chain Research, also known as the Soybean Innovation Laboratory (SIL), is being funded by the U.S. Agency for International Development.

Targeting Tomatoes

The most common garden vegetable is also a staple in research laboratories at Mississippi State. From herbicide tolerance to gene modification, tomatoes are being studied to help farmers grow the popular fruit with fewer losses or injuries to the plants. Dr. Sorina Popescu, MAFES assistant professor in biochemistry, molecular biology, entomology and plant pathology, is working to understand how tomato plants respond to pathogens at the molecular level, and editing the plants using CRISPR (clustered regularly interspaced short palindromic repeats) technology. Popescu explained that the technology allows her to silence a gene expression or make it louder, which affects the plant's response. The technique is promising, she said, because you don’t bring anything new into the plant or take anything away. The pathogen Popescu is studying is called Pseudomonas syringae. It can easily wipe out an entire tomato crop if it infects the garden.The pathogen causes brown-black leaf spots and specks on green and red fruit. The pathogen causes stunting and yield loss, particularly if young plants are infected. Most pathogens have effectors that act in very similar ways. By studying tomatoes and Pseudomonas syringae, Popescu believes the findings can be extended to other vegetable crops to make them less susceptible to pathogens. Other tomato research happening at Mississippi State, though, may show noticeable improvements in the field more quickly. Dr. Paul Tseng, assistant MAFES professor in plant and soil sciences, is working on two research projects to get rid of the weeds growing in tomato crops. One of Tseng's research projects is to find herbicide-tolerant tomatoes that won't be affected by herbicide drift. His research started with 120 different varieties of tomatoes. So far, he has found 10 to 20 varieties that are tolerant to different herbicides. These varieties, though, are not necessarily commercially-produced tomatoes, and don't have the agronomic qualities like high yield and large fruit size that growers want. Tseng is also fighting the weeds directly through the allopathic traits in tomatoes. Allelopathy is the chemical inhibition of one plant by another, due to a release into the environment of substances acting as growth inhibitors. Allopathic tomatoes would release chemicals into the soil that interact with the roots and weeds and kill them. Both studies will help growers continue to provide one of summer's favorite fruits: red, ripe tomatoes. Read More

The Buzz Surrounding Neonics

In the midSouth, early-season pest management is a significant challenge to farmers. For insects, relatively mild winters combined with long, productive growing seasons create an almost perfect environment for their propagation. It is not unusual to see a variety of pest species coexisting at high levels in many fields. Neonicotinoids (also known as neonics) are systemic insecticides that are chemically similar to nicotine. The insecticide is absorbed by the plant and circulates through the plant’s tissues, killing the insects that feed on them. Unlike contact insecticides, which remain on the surface of the treated foliage, systemic insecticides are taken up by the plant and transported to other plant tissues that may include leaves, flowers, roots, stems, pollen, and nectar depending on the method of application. A decline in managed pollinators over the last decade led researchers to investigate if neonicotinoids were a contributing factor. It was deteremined that the risk to pollinators from neonicotinoids is so small; there essentially is no risk in the Midsouth. Read More

To till or not to till?

After four decades of research in corn, cotton, and soybeans, MAFES scientists have figured out a thing or two about conservation tillage. And research is helping north Mississippi farmers get seeds into the ground sooner with fewer equipment passes. The practice saves producers money with fewer passes across the field. It also helps protect the highly erodible soils in north Mississippi. A recent discovery has found that the practice also protects soil health. Read More

Toxin-free Castor Would Be Major Help to Industry

Castor oil is the highly desirable, plentiful product of castor beans. The oil is used to produce everything from cosmetics and paints to jet aircraft lubricants and certain plastics. The thick oil makes up 60 percent of the seed’s weight. By comparison, high-oil corn or canola only produce about 25 percent oil by weight. Ninety percent of the oil is ricinoleic acid, a fatty acid found in large quantities only in castor oil. This acid has many industrial applications. MAFES scientist are trying to make it possible to grow the plant safely for commercial oil production in Mississippi. Castor seed meal, not the oil, contains ricin, a toxic protein that can become fatal if untreated in the body. To make castor a commercially viable U.S. crop, scientists are trying to discover a way to genetically modify the plant so that either the gene that produces the toxin is no longer expressed or the toxin is no longer produced. One of the challenges is that castor resists being transformed. The genetic modification process involves inserting a fragment of DNA foreign to the plant into the genetic code, where it must be accepted and become active. Everything from cotton to corn and soybeans has been genetically modified, but castor is much more difficult. The castor cells can be transformed, but you can’t get whole plants to grow from the cells. Read More

Unlocking Mysteries

In the world of turf science, mysterious brown spots provide a peek at the multitude of bacteria and fungi that live within our lawns. Dr. Maria Tomaso-Peterson, a MAFES research professor in biochemistry, molecular biology, plant pathology and entomology, recently classified Culvaria malina, a strain of fungus common in turfgrass, which had previously gone unclassified. While fungi identification might seem straight-forward, figuring out which fungus is causing a symptom can be difficult; every plant has a variety of fungi living on it and many are benign. In order to discover which is causing the problem, researchers isolate one fungus at a time. The fungus is easily recognized by the distinct black eye spot lesion it causes on the leaf itself. Turf fungus is not the only mystery Tomaso-Peterson solves. There's a soybean disease coined the 'mystery disease' that has been out in the fields for 10 to 15 years. Scientists have only recently started looking at it. The diseased plants were brought to the lab and a fungus was isolated, identified and found to belong to a genus of woodrot fungi that generally isn't parasitic to plants. The soybean disease has been named 'taproot decline,' and scientists are currently collecting plants from all over Mississippi in order to get an idea of what the diversity is across the state. By identifying the pathogen and then classifying fungi according to genus-species, scientists are able to create a body of work, recording data such as the conditions it is found under, the symptoms it causes, and the biology behind it. It also allows them to get an idea of how prevalent it is in plants within a region, and what steps might be taken to prevent plant diseases. Read More

Using High Tunnels to Produce Crops Year-round

Don’t tell assistant research professor Bill Evans that you can’t grow tomatoes in January. Evans is raising warm-season vegetables, including organic tomatoes, cucumbers, and broccoli, throughout the winter using high-tunnel greenhouses, unheated hoop buildings covered in polyethylene. While the procedure used at the Truck Crops Branch Experiment Station in Copiah County is not ready for commercial production, Evans’s project has led to the installation of dozens of high tunnels across the state. In another effort, Evans studies methods of building better soil structure during the low-production months of July and August to improve fall production.

Where the Grass is Greener

Dr. Rocky Lemus is on a mission: to help Mississippi producers become better forage managers. To accomplish his mission, he and Joshua White, manager of the MAFES Official Variety Testing program in forages, are developing a year-round grazing system. The grazing system, combined with the Official Variety Trials program in forages, and a newly developed forage testing program all work together to make Mississippians better forage managers for grazing cattle and hay production. Read More